247 research outputs found

    The PITA System: Tabling and Answer Subsumption for Reasoning under Uncertainty

    Full text link
    Many real world domains require the representation of a measure of uncertainty. The most common such representation is probability, and the combination of probability with logic programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunctions (LPADs), Problog, PRISM and others. These languages share a similar distribution semantics, and methods have been devised to translate programs between these languages. The complexity of computing the probability of queries to these general PLP programs is very high due to the need to combine the probabilities of explanations that may not be exclusive. As one alternative, the PRISM system reduces the complexity of query answering by restricting the form of programs it can evaluate. As an entirely different alternative, Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability. Each of these approaches -- general PLP, restricted PLP, and Possibilistic Logic Programming -- can be useful in different domains depending on the form of uncertainty to be represented, on the form of programs needed to model problems, and on the scale of the problems to be solved. In this paper, we show how the PITA system, which originally supported the general PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and consists of a transformation along with an API for library functions that interface with answer subsumption

    Introduzione all'Intelligenza Artificiale

    Full text link
    The paper presents an introduction to Artificial Intelligence (AI) in an accessible and informal but precise form. The paper focuses on the algorithmic aspects of the discipline, presenting the main techniques used in AI systems groped in symbolic and subsymbolic. The last part of the paper is devoted to the discussion ongoing among experts in the field and the public at large about on the advantages and disadvantages of AI and in particular on the possible dangers. The personal opinion of the author on this subject concludes the paper. ----- L'articolo presenta un'introduzione all'Intelligenza Artificiale (IA) in forma divulgativa e informale ma precisa. L'articolo affronta prevalentemente gli aspetti informatici della disciplina, presentando le principali tecniche usate nei sistemi di IA divise in simboliche e subsimboliche. L'ultima parte dell'articolo presenta il dibattito in corso tra gli esperi e il pubblico su vantaggi e svantaggi dell'IA e in particolare sui possibili pericoli. L'articolo termina con l'opinione dell'autore al riguardo.Comment: 27 pages, in Italia

    Quantum Weighted Model Counting

    Get PDF
    In Weighted Model Counting (WMC) we assign weights to Boolean literals and we want to compute the sum of the weights of the models of a Boolean function where the weight of a model is the product of the weights of its literals. WMC was shown to be particularly effective for performing inference in graphical models, with a complexity of O(n2w)O(n2^w) where nn is the number of variables and ww is the treewidth. In this paper, we propose a quantum algorithm for performing WMC, Quantum WMC (QWMC), that modifies the quantum model counting algorithm to take into account the weights. In turn, the model counting algorithm uses the algorithms of quantum search, phase estimation and Fourier transform. In the black box model of computation, where we can only query an oracle for evaluating the Boolean function given an assignment, QWMC solves the problem approximately with a complexity of Θ(2n2)\Theta(2^{\frac{n}{2}}) oracle calls while classically the best complexity is Θ(2n)\Theta(2^n), thus achieving a quadratic speedup

    SWISH: SWI-Prolog for Sharing

    Full text link
    Recently, we see a new type of interfaces for programmers based on web technology. For example, JSFiddle, IPython Notebook and R-studio. Web technology enables cloud-based solutions, embedding in tutorial web pages, atractive rendering of results, web-scale cooperative development, etc. This article describes SWISH, a web front-end for Prolog. A public website exposes SWI-Prolog using SWISH, which is used to run small Prolog programs for demonstration, experimentation and education. We connected SWISH to the ClioPatria semantic web toolkit, where it allows for collaborative development of programs and queries related to a dataset as well as performing maintenance tasks on the running server and we embedded SWISH in the Learn Prolog Now! online Prolog book.Comment: International Workshop on User-Oriented Logic Programming (IULP 2015), co-located with the 31st International Conference on Logic Programming (ICLP 2015), Proceedings of the International Workshop on User-Oriented Logic Programming (IULP 2015), Editors: Stefan Ellmauthaler and Claudia Schulz, pages 99-113, August 201

    MAP Inference in Probabilistic Answer Set Programs

    Get PDF
    Reasoning with uncertain data is a central task in artificial intelligence. In some cases, the goal is to find the most likely assignment to a subset of random variables, named query variables, while some other variables are observed. This task is called Maximum a Posteriori (MAP). When the set of query variables is the complement of the observed variables, the task goes under the name of Most Probable Explanation (MPE). In this paper, we introduce the definitions of cautious and brave MAP and MPE tasks in the context of Probabilistic Answer Set Programming under the credal semantics and provide an algorithm to solve them. Empirical results show that the brave version of both tasks is usually faster to compute. On the brave MPE task, the adoption of a state-of-the-art ASP solver makes the computation much faster than a naive approach based on the enumeration of all the worlds

    Lifted Variable Elimination for Probabilistic Logic Programming

    Full text link
    Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relational languages outside of logic programming. In this paper we adapt Generalized Counting First Order Variable Elimination (GC-FOVE) to the problem of computing the probability of queries to probabilistic logic programs under the distribution semantics. In particular, we extend the Prolog Factor Language (PFL) to include two new types of factors that are needed for representing ProbLog programs. These factors take into account the existing causal independence relationships among random variables and are managed by the extension to variable elimination proposed by Zhang and Poole for dealing with convergent variables and heterogeneous factors. Two new operators are added to GC-FOVE for treating heterogeneous factors. The resulting algorithm, called LP2^2 for Lifted Probabilistic Logic Programming, has been implemented by modifying the PFL implementation of GC-FOVE and tested on three benchmarks for lifted inference. A comparison with PITA and ProbLog2 shows the potential of the approach.Comment: To appear in Theory and Practice of Logic Programming (TPLP). arXiv admin note: text overlap with arXiv:1402.0565 by other author

    Approximate Inference in Probabilistic Answer Set Programming for Statistical Probabilities

    Get PDF
    Type 1 statements were introduced by Halpern in 1990 with the goal to represent statistical information about a domain of interest. These are of the form ''x of the elements share the same property''. The recently proposed language PASTA (Probabilistic Answer set programming for STAtistical probabilities) extends Probabilistic Logic Programs under the Distribution Semantics and allows the definition of this type of statements. To perform exact inference, PASTA programs are converted into probabilistic answer set programs under the Credal Semantics. However, this algorithm is infeasible for scenarios when more than a few random variables are involved. Here, we propose several algorithms to perform both conditional and unconditional approximate inference in PASTA programs and test them on different benchmarks. The results show that approximate algorithms scale to hundreds of variables and thus can manage real world domains
    • …
    corecore